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Estimating the Probability of a Diffusing Target Encountering a
Stationarg Sensor

by
James N. EagLe

Department of Operations Research
Naval Postgraduate School

Monterey, CA 93943

In this report two expressions are given for the probability of a

diffusing target avoiding detection to time t by a sensor fixed at the

center of a square region A. The target is constrained to always remain

within R. The first expression resuLts from an approximation to the

exact solution of the diffusion equation, and the second from

experimentation with a Monte Carlo simulation of the diffusion process.

The sensor considered is a definite range Law or "cookie cutter"

detector. For such a sensor, there is a.specified range, R, beyond which

detection is impossible and inside which detection is certain.

1. Background

This work was begun with the intention of developing for the Naval

War CoLlege, Newport, RI a simple expression for the probability of a

diffusing target avoiding detection by a sensor conducting a moving,

systematic search of the area R. It was soon realized that the special

case of a stationary sensor had to be first addressed, and that this

simpLer problem was indeed nontrivial.

The importance of the stationary sensor problem goes beyond being a

Limiting case of the moving sensor problem. It may be used to provide

estimates of the rate at which randomly moving targets will encounter
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stationary objects with extended fields of influence, such as fixed

acoustic sensors, sonobuoys, or possibly mines.

This stationary sensor problem might appear deceptively simple at

first glance. After all, it could be argued, this problem is equivalent to

that of a searcher with a cookie cutter sensor of range R conducting a

random search for a stationary target. Rnd Koopman[ 1946) and [ 1960)

argued that the probability of nondetection to time t is exp(-2Rvt/R),

where v is the speed of the random search. The problem is, of course,

what to use for v when the searcher's path is a diffusion. One of the

results of this work is an expression for the equivalent speed of such a

1W, "diffusion search" of a square area.

The initial, experimental results for the problem here addressed were

obtained by SisLiogLu[1984). SisLiogLu conducted Monte Carlo simuLations

with different target diffusion constants D, area sizes R, and sensor

detection ranges R. He observed that when the initiaL distribution of the

6 , target was uniform over R, the probability of nondetection to time t,

0"PNO(tJ, was given approximately by
'::: "(I1- iIR2fR) expf-Z4.7 ROt/Rl'} (1

In this report, some anaLyticaL support for SisliogLu's results is offered.

Also a slight modification of (1) is suggested which agrees more cLoseLy

with theory and expermentaL results when the area of the detection

disk approaches the area of the search region A.
i

2. The Diffusion Equation

The probability density p(t) of a particle undergoing diffusion in any

coordinate system must satisfy the diffusion equation

(0/12) V2p = p/at, (2)

i
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where 0 is the diffusion constant, and V2 is the Laplacian operator. In

Cartesian and polar coordinates, respectively, (2) becomes

(0/2 (a2p/ax 2 + a2p/ay2) = ap/at, and (3)

(D/2) {aWp/ar 2 + (1/r2Z)(a 2p/ae2 ] + Wllr)(ap/ar}] = ap/at. (4)

To find a unique function p(x,y,t) or p(r,e,t) satisfying these partial

differential equations, spatial and temporal boundary conditions must be

specified. Defining A to be a square with sides of Length L in the first

quadrant, the boundary conditions in Cartesian coordinates are

ap/axlxo = ap/axlx=L = 0, (5)

ap/aylyo= aP/aYjy=L = 0, (6)

p(x,y,t) = 0, ((x - L/2)2+fy - L/2) 2 )1/2 4 R, and (7)

p(x,y,O] = l/A, ((x - L/2) 2+(y - L/212 jl/2> R. (8)

Equations (5) and (6) ensure that none of the target's probability mass

"escapes" from A. That is, the boundaries of R are reflecting. Equation

(7) requires that p(x,y,t) be 0 on the detection disk. And (8) ensures that

the initial distribution of the target over the search region is uniform and

integrates to [A-iTRV/R [the probability that the target is not detected

at time 0).

For any particular instance of the probLem, finding a p(x,y,t)

satisfying (3) and the boundary conditions is not difficult using numerical

methods. Such procedures are routinely used in heat transfer problems

to solve the diffusion equation (called the conduction equation or the

Fourrier equation in the physics and engineering Literature) to determine

the temperature distribution across imperfectly conducting solids. In

f ,t, Pitts and Sissom[1977] give the example of a heated pipe in a

square bLock of insulating material as one where the isotherms can be

accurately estimated by hand pLotting.



ALthough the problem is not hard to solve numericaLLy, the square

boundary of R combined with a circular sensor tend to make the

,* anaLyticaL solution difficult to obtain. And without an anaLytical

solution, it may be impossible to establish SistiogLu's observations in

I• generaL. Making a change to the geometry, however, aLLows an

anaLyticaL solution. SpecificaLLy, if the search region A is assumed to be

a disk of area A instead of a square, then an exact solution in polar

coordinates is possible.

It is noted that the ray solution method described by MangeL[ 19611

* could presumably be used to solve the diffusion equation, at Least

approximately, for a square search area. Such a solution was not

attempted since an exact solution was avaiLabLe for the circular search

area case.

3. The Solution

i The disk-within-a-disk geometry has a radial symmetry, thus reducing

the probLem to one dimension, r. The new problem is to find a function

*. p(r,t} satisfying

(D/2) (a2p/ar 2 + (1/r}{ap/arl) = ap/at,

subject to

ap/arIr=% = 0,
p(r,t] =A, r,<R,
pKrO] lI/t, r>FI,

where RR = II/Tr)1 2 is the radius of the transformed (i.e., circular) search

area A. This problem has been soLved in the physics Literature.

.~~~~ . . .. ... .
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Muskat[ 1937) and Muskat[19341 (a paper investigating the production

rate of oil weLLs) give the solution as

00

p(r,tJ = -(I/RI) Z k U(anr) exp(-D x,2 t/2) (9)
n=l

where

kn = 4JorII JianIRRJ / (J0
2fnR) - J,2( anRRI), (10)

U(arr) = Y4oRR) J 0 rrJ - tJI(faRA) Yo(onr), (11)

and ao, is the nth positive root of U(cR). (That is, the nth smaLLest

positive value of ac satisfying U(caR) = 0.) RILso, JO, J1, YO, and Y1 are

respectively Bessel, functions of the first kind order 0, first kind order 1,

second kind order 0, and second kind order 1.

The soLution (9)fIl does not appear particuLarLy easy to evaluate or

interpret, being an infinite sum of Bessel functions. However for Large t

the solution simplifies considerably. Rs t becomes large, (9) becomes

f-uk, /R) U(ca rl exp(-D a1
2t/2), [12)

where o is the smaLLest positive value of a such that U(fR) = 0. The

other exponential terms are ignored since they involve Larger roots of

U(oR). This means that as t becomes Large, the decrease in p(r,t) for

constant r becomes exponential at a rate of oa2/2.

When p(r,t) is specified, PND(t) is then given by

2*f Rn

jfI pfr,t) r dr de. (131

0 R
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So for Large t, PNOtI becomes

RR

- 12 2 k I f] {J U~o rl r dr) exp(-D & 1
2 t/2] [14)

R

= - [2Zkl RjR/[Ra ))J{J[o RR) YI[Oc R) - Yic,1RR) a1[o R)} expf-D oe12t/2i, (151

= K exp (-0 ol'2t/2),

where K is a constant which depends on the problem geometry.

EvaLuation of the integral in [14) is straightforward given the change of

variable u=oa, r and the identities

Jx Jdox) dx = x dl xl and Jx YO[x) dx = x Y1 x.

Thus for Large t, PNOt) decreases exponentiaLLy at the same rate as

p(r,t]. So Sislioglu's observation of exponentiaLLy decreasing POIDt) (or,

equivaLentLy, a constant detection rate) appears asymptoticaLLy correct

for Large enough t.

Using Muskat's dimensionless notation, we can simplify the solution

somewhat by defining

x = oeR and p = R/R.

Then for Large t, PNOt] can be written as

K exp [-0 x1
2 t/2R 2 ), (161

where x, is the first positive x satisfying

Yfxp) Joxl - Jd(xpl Yo4x) = 0; [171

K is given by

-[21rk l(xl p2)) {J1 x p] y1(x1) - y4xI p) j 1(x 1}; (18)

and k, is

joxlJ 3l(x p) / (jo2(Xl] - jl2fx, p)1. 1191
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In the next section, experimentalLy determined PND(t) from a Monte

Carlo simulation of the diffusion process will be compared with (16-(19),

SisLiogLu's approximation (1), and a slight modification of (1).

4. Simulation Results and Conclusions

Figure 1. is a plot of PNOt) determined by Monte Carlo simulation of

the diffusion process for a square area A of size 10,000 square nautical,

miles (nm2], a diffusion constant 0 of 100 nm2/hour, and detection radii F

varying from 28.21 nm (p=2) to 3.76 nm (p=15). The time increment for

these simulations was 1 minute, which resulted in the x and y

displacements of the target in each increment being selected from

independent normal distributions of mean 0 and variance 100/60.

Figure 1. illustrates the degree to which the decrease in PN0(t) is

exponential. PLotted on a Log scale, PN0(t) appears very nearly Linear.

For small t, however, the decrease in PNO(t) is faster than exponential.

This is seen more clearly in Figure 2, which is an enlargement of the

upper Left-hand corner of Figure 1.

Sislioglu reported that PNB(t) can be approximated by

1 - TYR2/A) expf- 24.7 ROt/R 1.5). (20)

The simulation results reported here indicate that a somewhat better

approximation when p approaches 1 is

1 - rR 2/R] exp(- 24.7 ROt/[R - nfR2) 1.5). (211

That is, A in (20) is replaced with A - nR2. Figure 3. compares PND(t)

calculated by simulation with the estimates given by (21), (201, and the

asymptotic estimate (16)-(19). The simulation data in Figure 3. are the

"o'. - "-" "- ~ ~ ....... - -'"-" " .'; " ... .. -" -' . ' " "- ,---" %--.-,-.-.-.--- --.- " ' -.-...- -.-.
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same as in Figures 1. and 2. except that only results for p of 2, 3, and 6

are shown. In Figure 3. the simulated PND(t) Is shown as a solid Line,

while the estimated PNDt) is shown as dashed.

Figure 3.(C) indicates that, especiaLLy for smaLL p, PNDt] determined

by simulation does not decrease as rapidly as predicted by (16-19). The

explanation is believed to be that for p sufficiently close to 1, a circular

search region does not provide a reasonable approximation of a square

region of the same area. To test this explanation, the three simulations

plotted in Figure 3. were repeated with circular search areas. The

results, shown in Figure 3.(D)., indicate a closer agreement between the

4theoretical and observed data. But still the fit is not exact. This is

somewhat disturbing, but might be explained by the discrete manner in

which the diffusion path is simulated. The simulated diffusion path is

approximated by a series of points. Detection must occur exactly at the

-i points and can not occur between them. The distance between adjacent

*i. points is the random variable [AX2 +AY2 1 12, where AX and AY are the

independent, normaLLy distributed x and y displacements. It is possible

-- for the simulated path to jump across the edge of the detection disk

without achieving detection, even though the Line segment connecting

the points lies partly on the disk. This will tend to reduce the simulated

detection rate below that of the diffusion being approximated.

Figure 4. shows a plot of xivs. p for values of p from 2 to 15. By

using (161, these values of x, determine the theoretical asymptotic

detection rate as
0 x 2/1[2R 2 ). (221

Table 1. Lists the asympoic d etection rates determined by (22), (21), (20],

S . . . . . . .. . . . . . . . . . . . . ,. . . . .. .. .,
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and an ovPrall (i.e., from time 0) best fit rate calculated by Least-

squares fitting of the simulation data.

p x1(p) DxI 2/(2R 2 24.? RD/(R-17R2)'"5 24.7 RD/R 1-5  Simulation
(Eq. 22) (Eq. 21) (Eq. 20) Best Fit

2 1.361 .116 .107 .0697 .102
2.5 .866 .0736 .0724 .0557 .0665
3 .626 .0554 .0554 .0465 .0507
4 .389 .0381 .0384 .0304 .038
6 .218 .0269 .0242 .0232 .0250
8 .147 .0217 .0178 .0174 .0202

10 .111 .0194 .0141 .0139 .01704
15 .0661 .0154 .00935 .00929 .0137

TabLe 1. Detection Rates for Various p.

The simulation data suggest the following two conclusions:

a. Equations (16)-(19) give a reasonable estimate PN(t), but the fit

deteriorates as p decreases to 1.

b. For small p, (21) gives a better fit to the data than does (20).

For Large p, both (201 and (21) underestimate the observed asymptotic

detection rate.

We conclude with a few comments on random search. As mentioned

earlier, Koopman's random search model predicts a detection rate of

2Rv/R for searcher with speed v and detection range R conducting a

random search of an area of size R. It seems reasonable that a

diffusion path shouLd be "random" enough for this model to be

appropriate. In fact, we have seen that the detection rate, white not
1%I

A l'



constant, approaches a constant value for Large t. Setting 2Rv/R equal

to the exponential term in (21) and solving for speed v gives

12.35 AD/(FA - iR21i"

as an approximate equivalent speed for a searcher conducting a

"diffusion search" of a square area.
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